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Anisotropic phase transition in the asymmetric three-states 
clock model 

T Vescan, V Rittenberg and G von Gehlen 
Physikalisches Institut der Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 5 September 1985 

Abstract. The three-states asymmetric clock model is considered in the x-continuum limit. 
Along the x axis the interaction has the Potts symmetry and the Hamiltonian thus obtained 
is non-Hermitian. 

Using finite-size scaling one obtains only one phase transition, which is anisotropic, 
between a low-temperature ferromagnetic phase and a high-temperature modulated phase. 
Estimates for some critical exponents are given. 

1. Introduction 

The phase structure of the two-dimensional three-states asymmetric clock model 
(Ostlund 1981, Huse 1981) remains a controversial issue (see Duxbury et al 1984 and 
references therein). The system is defined by a partition function 2 and an action S 
as follows 

'= - E  { g X  C O S [ f ~ ( ( Y X + I , T - ( Y X , T ) l + g T  c o s [ ~ . r r ( ( Y X , T + ~ - ( Y X , T ) - ~ ] }  (Is2) 
X, T 

where = 0, 1,2, and 0 s cp G fm For g, = g, - 1/ Tone probably has a phase diagram 
with the general structure shown in figure 1. However, the details are controversial. 

Disordered 

Figure 1. Phase diagram for the chiral three-states clock model (the points A, B, C and D 
are explained in the text). vL is the value of the asymmetry angle corresponding to the 
Lifshitz point. 
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One distinguishes a low-temperature commensurate phase separated by the curve AB 
from a disordered phase through a Potts transition according to Howes (1982) or a 
chiral transition (Huse and Fisher 1982, Duxbury et a1 1984). The Lifshitz point B 
corresponds to an angle cpL and the curves BC and BD are the borders of the 
incommensurate phase (Selke and Yeomans 1982). Now the very existence of the 
Lifshitz point at a non-zero angle cp is questioned (Haldane et a1 1983, Schulz 1983, 
von Gehlen and Rittenberg 1984). 

The understanding of the phase diagram is obscured by convergence problems so 
that different authors using different approaches have reached contradictory con- 
clusions. Clearly, in order to clarify the situation as many different methods as possible 
should be applied. 

Let us concentrate here on the application of finite-size scaling (FSS) methods 
(Nightingale 1982) to our system (1.2). Since the action is asymmetric with respect to 
the x and T directions, FSS may be applied either 

(1) to strips finite in the T direction (which is the direction where incommensurate 
structures are expected to show up). This has been studied by von Gehlen and 
Rittenberg (1984) in the T continuum limit 

g, + 0 gx + 00 1/ T = gv exp($gx) fixed (1.3) 

(we shall summarise the main results later) 
(2) or to strips finite in the x direction (which has the Potts symmetry). This has 

been investigated recently by Duxbury et al (1984) for the symmetric situation gx = g, 
The purpose of the present paper is to present a detailed study of the anisotropic 

limit 

of the transfer matrix for case 2. Since we find very good convergence of the FSS 

extrapolation in this limit, a clear picture of a single asymmetric phase transition will 
emerge. 

Before proceeding to present our calculations, we shall first review a few details 
relevant to the understanding of our work. 

In the limit (1.3) the transfer matrix of the action (1.2) leads (after a duality 
transformation) to the Hamiltonian of a one-dimensional quantum chain: 

N N 

R D =  C ( ~ C O S ~ ~ - - ~ ' ~ C ~ - ~ - ~ ~ C : ) - T  (rkr:+l+r:rk+l) (1.5) 
k = l  k = l  

where 

and w = exp(g7ri). In (1.5) k labels the sites of the chain of lengths N. 
Von Gehlen and Rittenberg (1984) have determined the boundary of the com- 

mensurate phase (ABC in figure 1). The wavevector K was obtained from the spacing 
of the zeros of the energy gap of the Hamiltonian (1.5) according to the methods of 
Hoeger et a1 (1985). The result for the critical exponents of the correlation length 6 
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and K is 

with 

v, = 1 v., = 0.5 (1 .8)  

for all values of cp down to Q = .rr/lO. For small values of cp the convergence gets 
poorer. However, the pattern of the zeros of the energy gap is smooth and follows a 
scaling law, so that no room seems to be left for a Lifshitz point B at a non-zero value 
of cp. More details are contained in von Gehlen and Rittenberg (1986). 

In case 2 above, the transfer matrix is non-Hermitian. Duxbury et a1 (1984) have 
calculated the lowest eigenvalues A. and A I  of this transfer matrix and obtain 

(1.9) 

with 

8;’ = IT - T,I yr2 (1.10) 

61 = V J  v x  62 = vr,/ v,. ( 1 . 1 1 )  

K = 1 T - T.1 y r ~  

where is the correlation length in the T direction. Let us furthermore define 

Using FSS, the method of Domany and Schaub (1984) for anisotropic scaling and their 
own ‘diagnosis’ of the data, Duxbury et a1 (1984) have concluded that on the line AB 
on figure 1,  = 1, v, = 0.8 compatible with a chiral transition, there is a Lifshitz 
point at c p L =  .rr/4 and for Q > (pL they get 

The anisotropic limit (1.4) of the non-Hermitian transfer matrix used by Duxbury 
et a1 leads to the non-Hermitian Hamiltonian 

= 
< 1 compatible with (1.5). 

and its dual 

N N 

H ~ = -  ( u k + + ; ) - T  C rkr;+l. 
k = l  k = l  

(1.12) 

(1.13) 

Notice that the Q dependence is lost in this limit, for all Q # 0 one obtains the same 
Hamiltonian. The limits (1.4) and cp + 0 do not commute. 

In 9 2 we shall give a detailed study of the FSS properties of the Hamiltonians 
(1.12) and (1 .13) .  A clear picture of the phase structure of H and HD will emerge. 
Critical exponents and the asymmetrics ( 1 . 1 1 )  will be determined. Section 3 presents 
our conclusions. 

2. Finite-size scaling properties 

Although this should be done, we have not performed the high- and low-temperature 
expansions for the Hamiltonians ( 1.12) and ( 1.13) and have considered only their 
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finite-size scaling properties. Notice that the Hamiltonians (1.12) and (1.13) commute 
with the charge operator 

N Q = C  q k  (mod 3) 
k = l  

The adjoints of the operators H and HD, H +  and HD+, have the property that the 
charge sectors 1 and 2 are interchanged. For convenience we will write 

A = l / T  (2.3) 
and denote by 

WLQ'( N, A ) = EiQ'( N, A ) + iFiQ'( N, A ) (2.4) 
the eigenvalues of the Hamiltonians with N sites and periodic boundary conditions. 
Q indicates the charge sector (Q = 0, 1,2) and n labels the levels: n = 0,1,2, . . . with 

EiQ'(N,A)<E'R,\(N,A). (2.5) 

Wil)(Ny A )  = w'i'*(N, A ) .  (2.6) 

E ( N, A ) = E bl)( N, A ) - E bo)( N, A ) (2.7) 

Obviously 

We have determined the inverse of the spin-spin correlation: 

the wavevector 

F ( N , A ) = F ~ ~ ) ( N , A )  

and the inverse of the energy-energy correlation 

G ( N ,  A)=Eio ' (N,  h ) - E f ) ( N , h ) .  

Finite-size scaling teaches us that one should obtain 

E ( N ,  A )  = N-e2'if(z) 

F(  N, A ) = N-el.F( z )  

G( N, A ) = N-'3 Ce( 2) 

(2.10) 

where 

(A -A,) ei = v ~ , /  v,. (2.11) z = NI/". 

In order to obtain the critical exponents Bi and v, we have constructed the functions 
(Kinzel 1983, Domany and Schaub 1984): 

(2.12) 

and similar expressions with F ( N ,  A )  and G ( N ,  A )  instead of E ( N ,  A), i.e. YF(N,  A ) ,  
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Z F ( N ,  A ) ,  etc. From the equations 

(2.14) 

(2.15) 

one gets approximants for the critical temperature A c  = (TC)-' and the critical exponents 
Bi and vx.  

Finally we have considered the 'specific heat' 

(2.16) 

which allows us to determine a. 
We first study the Hamiltonian H (see (1.12)). In figure 2 we show the curves 

Y E ( N ,  A )  and YF(N,  A ) .  We do so because Duxbury et a1 (1984) have noticed for 
cp > ~ / 4  a wiggle in the function Y E ( N ,  A )  and their functions Y E ( N ,  A )  and YF(N,  A )  
intersect in different places. Their functions YF(N,  A )  intersect at a lower temperature 
(the commensurate-incommensurate phase transition) and the functions YE ( N ,  A )  at 
a higher temperature (the incommensurate-disordered transition). As one can see 
from figure 2, in our case the functions YE( N, A )  and Y,(N,  A )  intersect at the same 
temperature indicating only one phase transition. (We are interested only in positive 
YE and YF according to (2.14).) In table 1 we give the values of Ac,N,  f3Z,N and vX,,, 
obtained using (2.14) and (2.15) for YE(N,  A )  and Z E ( N ,  A ) .  In table 2 we show the 
corresponding quantities obtained from Y F ( N ,  A )  and Z F ( N ,  A ) .  The estimates for 
A,, Bi and v, were obtained using Vanden Broeck-Schwartz (1979) approximants as 
well as power fits. Similar estimates are given for HD (see (1.13)) in table 3. In this 
case we have used only Y E ( N ,  A )  and Z,(N,  A )  since the imaginary part of the first 
excited state is small. 

Figure 2. YE ( N ,  A and YF( N, A ) as functions of A, for N = 2,3,4.  
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Table 1. The approximants 
functions YE( N, A )  and ZE( N, A )  for the Hamiltonian H. 

and v , , ~  obtained using (2.14), (2.15) and the 

Intersections 
( N - I ) I N I ( N + 1 )  Ac.h 92.N 

21 31 4 0.741 048 2404 1.082 67 
31415 0.708 517 0461 0.959 85 
41516 0.696 541 9038 0.901 79 
51617 0.690 618 4803 0.866 88 
61718 0.687 160 0210 0.842 94 
71819 0.684914 7815 0.825 10 

vx, N 

0.633 46 
0.734 53 
0.790 27 
0.826 33 
0.851 77 
0.870 88 

Estimates 0.678 * 0.003 0.75 * 0.03 0.95 * 0.02 

Table 2. The approximants A c , ~ ,  
functions YF(N,h)  and Z,(N, A )  for the Hamiltonian H. 

and v ~ , ~  obtained using (2.14), (2.15) and the 

21314 0.721 940 6115 0.941 26 0.622 737 
31415 0.697 647 6441 0.826 93 0.710 984 
41516 0.688 831 7569 0.771 64 0.758 145 
51617 0.684 537 0343 0.737 98 0.788 441 
61718 0.682 077 881 1 0.714 86 0.809 94 
71819 0.680 517 1658 0.697 73 0.826 20 

Estimates 0.676 f 0.002 0.64 * 0.02 0.90 * 0.04 

Table 3. The approximants Ac,N, 02,N and vx,N obtained using (2.14), (2.15) and the 
functions YE(N, A )  and ZE(N, A )  for the Hamiltonian HD. 

21314 0.608 237 191 1 0.922 979 0.658 19 
31415 0.635 513 1663 0.813 810 0.775 14 
41516 0.647 095 1939 0.760 058 0.843 93 
516J7 0.653 425 5329 0.726 382 0.891 27 
61718 0.657 421 3556 0.702 438 0.926 73 

Estimates 0.668 * 0.007 0.64 f 0.02 1.03 f 0.02 

From tables 1-3 and figure 2 we conclude that one has only one phase transition with 

(2.17) 

From now on we will look for further confirmation of our conclusion. In table 4 
and v , , ~  obtained from the real parts of the energy gaps 

A, = 0.675 * 0.005 el = e2 = 0.70 * 0.04 v, = 0.95 k 0.04. 

we show the values of 
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Table 4. Values of and v+,., obtained from the real parts of the energy gap for the 
Hamiltonian H at three different assumed positions of the critical point (A,=0.670,0.675, 
0.680). 

e 2 , N  %, N 

Intersection 
N / ( N + l )  A,=0.670 A, = 0.675 Ac = 0.680 A, = 0.670 A, = 0.675 A, = 0.680 

213 
314 
41 5 
516 
617 
718 
819 

Estimates 

0.897 560 988 
0.819 829 899 
0.778 875 269 
0.751 384491 
0.730 530 453 
0.713 554018 
0.699 106 391 

0.63 f 0.01 

0.910431 969 
0.837 534 160 
0.801 305 801 
0.778 429 020 
0.762 078 826 
0.749 499 664 
0.739 346 293 

0.69 * 0.01 

0.923 338 943 
0.855 399 044 
0.824 099 409 
0.806 124 688 
0.794 658 074 
0.786 952 495 
0.781 670 308 

0.77 * 0.01 

0.611 315 
0.744 576 
0.817 681 
0.866 159 
0.902 12 
0.930 91 
0.955 24 

1.06 f 0.02 

0.608 798 0.606 395 
0.738 823 0.733 455 
0.807 929 0.799 054 
0.851 717 0.838 916 
0.882 34 0.865 29 
0.905 17 0.883 63 
0.922 96 0.896 74 

1.02*0.01 0.93*0.01 

assuming that the critical point is at A, = 0.670, 0.675 and 0.680. The estimates are in 
agreement with (2.17). 

In order to convince ourselves that there is only one phase transition, in figures 
3-5 we show the functions N”’E(N, A ) ,  N”’F(N, A )  and N”’G(N,  A )  (see (2.8) 
and (2.9)) which correspond to Bi = 5. From figures 3 and 4 one can clearly conclude 
that there is only one phase transition between a high-temperature modulated phase 
and a low-temperature ordered phase. Figure 5 is more amusing because the parabola- 
like curves N”*G(N, A )  intersect twice, say at the values AL:L and A$,, which would 
suggest two phase transitions. This is however a fluke since the sequences Ai’!, and 
AY!, converge to the same value A, as can be seen in table 5. 

Probably the best estimate for A, was obtained considering again the Hamiltonian 
H (equation (1.12)) with twisted boundary conditions (see von Gehlen and Rittenberg 
1984) and computing the energy gap between the ground state with periodic boundary 
conditions and the first excited state with twisted boundary conditions. This energy 

Figure 3. The functions N ” 2 E ( N ,  A )  against A for N = 2,.  . . ,7 .  
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I 
0.2 0.4 0.6 0.8 1.0 

Figure 4. The functions N112F(N,  A )  against A for N = 2 , .  . . , 7 .  

0.25 0.50 0.75 

Figure 5. The functions N112G(N,  A )  against A for N = 2 , .  . . , 7 .  
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Table 5. The intersections A::,, and AL:L of the functions NL12G(N, A )  for the Hamiltonian 
H. 

Intersection 
N I ( N + l )  c, N c.N 

A ( 1 )  A(?-) 

0.296 446 913 
0.365 659 637 
0.412 523 730 
0.445 246 45 
0.469 103 198 
0.487 176 453 
0.501 321 577 

0.91 1 862 676 
0.838 453 983 
0.789 637 502 
0.758 634 786 
0.737 915 471 
0.723 374 084 
0.712 761 715 

Estimates 0.63 * 0.03 0.66 * 0.03 

gap vanishes for finite systems and gives good approximants for A,. One obtains 

A c  = 0.667 * 0.004 = 2. (2.18) 

We now consider the ‘specific heat’ C (  N, A )  (see (2.16)). It is convenient to separate 
C ( N ,  A )  in a smooth background CB(A) and a ‘singular’ part C,(N,  A ) :  

C(N,A)=CB(A)+Cs(N,A). (2.19) 

The functions C B ( A )  and C,(N,A) are shown in figure 6. We have determined the 

A 

Figure 6. The specific heat Cs(N, A )  for N =3,4, 5, 6 and the linear background C&). 
The positions of the maxima of the curves Cs(N,  A )  for N = 3,. . . , 8  are also indicated 
(the points M 3 , .  . . , M 8 ) .  
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ratio a / v ,  (see (2.16)) using C,(N,  A ) .  The estimate is 

a /  U, = 0.48 f 0.05. (2.20) 

3. Conclusions 

We have taken the x continuum limit of the tranfer matrix corresponding to the 
asymmetric three-states clock model and have obtained the non-Hermitian Hamil- 
tonians (1.7) for any non-zero asymmetry Q (see (1.2)). We have studied this Hamil- 
tonian and have shown that there is only one phase transition which is anisotropic 
(there are two correlation lengths in the problem). The critical point is 

Ac = 0.667 * 0.004 

and the critical exponents are 

(3.1) 

U, = 0.95 * 0.04 

a = 0.48 f 0.05. 

v, = 0.67 f 0.04 

(3.2) 
We stress the fact that the convergence properties in our finite-size scaling study are 
very good. 

Notice that the values (3.2) are compatible with the hyperscaling relation (Hornreich 
et a1 1975, Hoeger et a1 1985) 

f f=2-vx-v,  (3.3) 
The behaviour of our system is very similar to that observed by Kinzel (1983) in 

a different model. It is also interesting to point out that the exponents (3.2) are close 
to those expected for a commensurate-incommensurate phase transition where U, = 1, 
vT =0.5 and a =0.5 (see, e.g., Hoeger et a1 1985). 

One can ask what is the relevance of our observation on the phase structure shown 
in figure 1. This is a very hard question. One possibility is that the line AB in figure 
1 represents an anisotropic phase transition and that Duxbury et a1 (1984) have not 
seen it because the size of their system was too small. Another possibility is that the 
phase diagram for g, # g,  (see (1.2)) is different and that the anisotropic phase transition 
shows up only for g, >> g,. 

References 

Domany E and Schaub B 1984 Phys. Rev. B 29 4095 
Duxbury M D, Yeomans J and Beale P D 1984 J.  Phys. A: Math. Gen. 17 L179 
Haldane F D M, Bak P and Bohr T 1983 Phys. Rev. B 28 2743 
Hoeger C, von Gehlen G and Rittenberg V 1985 J. Phys. A :  Math. Gen. 18 1813 
Hornreich R M, Luban M and Shtrikman S 1975 Phys. Rev. Left .  35 1678 
Howes S F 1982 Phys. Rev. B 27 1762 
Huse D A 1981 Phys. Rev. B 24 5180 
Huse D A and Fisher M E 1982 Phys. Rev. Leu. 49 793 
Kinzel W 1983 Phys. Rev. Left .  51 996 
Nightingale M P 1982 J. Appl. Phys. 53 7927 
Ostlund S 1981 Phys. Rev. B24 398 
Schulz H J 1983 Phys. Rev. B 28 2746 
Selke W and Yeomans J M 1981 Z. Phys. B 46 311 
Vanden Broeck J M and Schwanz L W 1979 SIAM J. Math. Anal. 10 659 
von Gehlen G and Rittenberg V 1984 Nucl. Phys. B 230 455 
- 1986 to be published 


